

Welcome to LKS Project Docs

	This is project, blog and shop with the most modern technologies, also for testing new version of python and django.

	This is just a pet project backend, this is not a boxed solution, this is just an API for my project.

Project Install from repo for developing

Clone project:

git clone -b develop https://github.com/63phc/lks.git

	There are two ways to start a project, all in docker or only pg, redis in docker

	You can not use docker, then you should have pg and redis in local

Start in Docker

	Install Docker: [instructions](https://docs.docker.com/install/linux/docker-ce/ubuntu/#supported-storage-drivers)

	edit .docker/dev/.env file with your params:

cp .env.example .docker/dev/.env
docker-compose -f .docker/docker-compose.yml build
docker-compose -f .docker/docker-compose.yml run backend python manage.py makemigrations
docker-compose -f .docker/docker-compose.yml run backend python manage.py migrate
docker-compose -f .docker/docker-compose.yml run backend python manage.py loaddata src/fixtures/*.json
docker-compose -f .docker/docker-compose.yml up

	Pycharm Setup: https://www.jetbrains.com/help/pycharm/docker.html

Start for developing locale with postgres, redis in docker

	in file .env:6 need update POSTGRES_HOST=localhost:

docker-compose -f .docker/docker-compose.local.yml up postgresql redis

	Create virtual env:

python3 -m venv Venv
source Venv/bin/activate
pip3 install -r src/requirements/development.txt

	Or through pipenv:

pip3 install pipenv
pipenv install
pipenv shell

	Env File

	edit .env.example file with your params:

cp .env.example .env

	Prepare project:

python manage.py makemigration
python manage.py migrate
python manage.py createsuperuser
python manage.py loaddata src/fixtures/*.json
python manage.py runserver

Git flow

	Easy git flow:

git checkout develop
git pull develop
git checkout -b <your branch>
when complete task
git add .
git commit -m '#<number task> commit messages'
git push origin <your branch>

	Git flow healthy person https://danielkummer.github.io/git-flow-cheatsheet/

	Settings flake + pre-commit hook:

sudo pip3 install flake8
#(OUTPUT FILTERS -> $FILE_PATH$\:$LINE$\:$COLUMN$\:.*)
flake8 --install-hook git
git config --global --bool flake8.strict true

	Easy start -> ctrl + shift + a -> flake -> enter

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at . All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing to Transcriptase

We love your input! We want to make contributing to this project as easy and transparent as possible, whether it’s:

	Reporting a bug

	Discussing the current state of the code

	Submitting a fix

	Proposing new features

	Becoming a maintainer

We Develop with Github

We use github to host code, to track issues and feature requests, as well as accept pull requests.

We Use [Github Flow], So All Code Changes Happen Through Pull Requests

Pull requests are the best way to propose changes to the codebase (we use [Github Flow]). We actively welcome your pull requests:

	Fork the repo and create your branch from master.

	If you’ve added code that should be tested, add tests.

	If you’ve changed APIs, update the documentation.

	Ensure the test suite passes.

	Make sure your code lints.

	Issue that pull request!

Any contributions you make will be under the MIT Software License

In short, when you submit code changes, your submissions are understood to be under the same MIT License [http://choosealicense.com/licenses/mit/] that covers the project. Feel free to contact the maintainers if that’s a concern.

Report bugs using Github’s issues [https://github.com/63phc/lks/issues]

We use GitHub issues to track public bugs. Report a bug by opening a new issue; it’s that easy!

Write bug reports with detail, background, and sample code

Great Bug Reports tend to have:

	A quick summary and/or background

	Steps to reproduce

	Be specific!

	What you expected would happen

	What actually happens

	Notes (possibly including why you think this might be happening, or stuff you tried that didn’t work)

License

By contributing, you agree that your contributions will be licensed under its MIT License.

What number task?

Security Policy

Supported Versions

Version build	Version api	Supported
————-	———–	——————
0.0.xb	api/v1	:white_check_mark:
0.1.x	api/v1	:x:
1.0.x	api/v1	:x:
2.0.x	api/v2	:x:

Reporting a Vulnerability

python3 -m pip install --user --upgrade setuptools wheel

python setup.py sdist bdist_wheel

pip install twine
twine check dist/*

python3 -m twine upload --repository testpypi dist/*

Quick start

	Add “lks” to your INSTALLED_APPS setting like this::

 INSTALLED_APPS = [
 'lks'
]

	Include the lks API in your project api/urls.py like this::

 path('lks/', include('lks.api.v1')),

	Run python manage.py migrate to create the lks models.

	Start the development server and visit http://127.0.0.1:8000/admin/
to create a lks (you’ll need the Admin app enabled).

	Visit http://127.0.0.1:8000/lks/ to participate in the api.

 nav.xhtml

 Table of Contents

 		
 Welcome to LKS Project Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

